Latin America & Caribbean

Last modified by S2S_regionact on 2021/11/13 05:23

  • Introduction

  • Information on regional workshops

  • Institutions/Projects in the region working on S2S

  • The Chilean NextGen: 

    Chile’s National Meteorological Service (DMC, as per its initials in Spanish) had implemented the Next Generation of Seasonal Climate Forecasts (NextGen), developed by the International Research Institute for Climate and Society (IRI). NextGen is a multi-model, statistically calibrated seasonal forecast system that takes advantage of the expertise of forecasters and local scientists. It is a modern forecast methodology that validates global models based on local experiences and climate data to provide more robust and fine-tuned forecasts for specific areas of interest. The predictions are to be used by decision-makers in sectors such as agriculture and food security, energy, water management, disaster prevention, health, and others. More information:

    The seasonal forecast is updated every month and presented in a public discussion and a bulletin. Monthly bulletin (in spanish): 

  • Key regionally-relevant S2S research questions & activities being pursued in the region

  • Publications

  • Barrett, B. S., Carrasco, J. F., & Testino, A. P. (2012). Madden–Julian oscillation (MJO) modulation of atmospheric circulation and Chilean winter precipitation. Journal of Climate, 25(5), 1678-1688.

  • Barrett, B. S., & Hameed, S. (2017). Seasonal variability in precipitation in central and southern Chile: Modulation by the South Pacific high. Journal of Climate, 30(1), 55-69.

  • Barros, V. R., Grimm, A. M., & Doyle, M. E. (2002). Relationship between temperature and circulation in Southeastern South America and its influence from El Ninño and La Ninña events. Journal of the Meteorological Society of Japan. Ser. II, 80(1), 21-32.

  • Barrucand, M., Rusticucci, M., & Vargas, W. (2008). Temperature extremes in the south of South America in relation to Atlantic Ocean surface temperature and Southern Hemisphere circulation. Journal of Geophysical Research: Atmospheres, 113(D20).

  • Blázquez, J., & Solman, S. A. (2017). Interannual variability of the frontal activity in the Southern Hemisphere: relationship with atmospheric circulation and precipitation over southern South America. Climate Dynamics, 48(7-8), 2569-2579.

  • Cerne, S. B., & Vera, C. S. (2011). Influence of the intraseasonal variability on heat waves in subtropical South America. Climate Dynamics, 36(11), 2265-2277.

  • Coelho, C. A. (2013). Comparative skill assessment of consensus and physically based tercile probability seasonal precipitation forecasts for Brazil. Meteorological Applications, 20(2), 236-245.

  • Collazo, S., Barrucand, M., & Rusticucci, M. (2019). Summer seasonal predictability of warm days in Argentina: statistical model approach. Theoretical and Applied Climatology, 138(3), 1853-1876.

  • Collazo, S., Barrucand, M., & Rusticucci, M. (2019). Variability and predictability of winter cold nights in Argentina. Weather and Climate Extremes, 26, 100236.

  • Delorit, J., Gonzalez Ortuya, E. C., & Block, P. (2017). Evaluation of model-based seasonal streamflow and water allocation forecasts for the Elqui Valley, Chile. Hydrology and Earth System Sciences, 21(9), 4711-4725.

  • Gubler, S., Sedlmeier, K., Bhend, J., Avalos, G., Coelho, C. A. S., Escajadillo, Y., Jacques-Coper, M., Martinez, R., Schwierz, C., de Skansi, M., & Spirig, Ch. (2020). Assessment of ECMWF SEAS5 seasonal forecast performance over South America. Weather and Forecasting, 35(2), 561-584.

  • Jacques‐Coper, M., Veloso‐Aguila, D., Segura, C., & Valencia, A. (2021). Intraseasonal teleconnections leading to heat waves in central Chile. International Journal of Climatology.

  • Marín, J. C., & Barrett, B. S. (2017). Seasonal and intraseasonal variability of precipitable water vapour in the Chajnantor plateau, Chile. International Journal of Climatology, 37, 958-971.

  • Meza, F. J., & Wilks, D. S. (2003). Value of operational forecasts of seasonal average sea surface temperature anomalies for selected rain-fed agricultural locations of Chile. Agricultural and Forest Meteorology, 116(3-4), 137-158.

  • Montecinos, A., Díaz, A., & Aceituno, P. (2000). Seasonal diagnostic and predictability of rainfall in subtropical South America based on tropical Pacific SST. Journal of Climate, 13(4), 746-758.

  • Montecinos, A., & Aceituno, P. (2003). Seasonality of the ENSO-related rainfall variability in central Chile and associated circulation anomalies. Journal of climate, 16(2), 281-296.

  • Montecinos, A., Purca, S., & Pizarro, O. (2003). Interannual‐to‐interdecadal sea surface temperature variability along the western coast of South America. Geophysical Research Letters, 30(11).

  • Osman, M., & Vera, C. S. (2017). Climate predictability and prediction skill on seasonal time scales over South America from CHFP models. Climate Dynamics, 49(7), 2365-2383.

  • Rusticucci, M., & Vargas, W. (2002). Cold and warm events over Argentina and their relationship with the ENSO phases: risk evaluation analysis. International Journal of Climatology: A Journal of the Royal Meteorological Society, 22(4), 467-483.

  • Rusticucci, M., Barrucand, M., & Collazo, S. (2017). Temperature extremes in the Argentina central region and their monthly relationship with the mean circulation and ENSO phases. International Journal of Climatology, 37(6), 3003-3017.

  • Rutllant, J., & Fuenzalida, H. (1991). Synoptic aspects of the central Chile rainfall variability associated with the Southern Oscillation. International Journal of Climatology, 11(1), 63-76.

  • Verbist, K., Robertson, A. W., Cornelis, W. M., & Gabriels, D. (2010). Seasonal predictability of daily rainfall characteristics in central northern Chile for dry-land management. Journal of Applied Meteorology and Climatology, 49(9), 1938-1955.

  • Xue, J., Luo, J. J., Yuan, C., & Yamagata, T. (2020). Discovery of Chile Niño/Niña. Geophysical Research Letters, 47(5), no-no.

Created by Administrator on 2021/04/27 14:14
This wiki is licensed under a Creative Commons 2.0 license
XWiki Enterprise 6.2.2 - Documentation